Information Theory Back paper (3 hours, Dec 2024)

Use a separate sheet for each problem; write your roll number at the top of <u>each page</u>. No book, no notes, no use of the internet. Attempt all problems.

Name: ____

Roll number:

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total:	100	

- Page 2 of 2ls of length10
- 1. (a) Suppose C is a prefix-free code over the alphabet $\{0, 1, a, b, c\}$ with n_i codewords of length i. Assume that we use $1, 2, 3, \ldots$ as indices for the positions in the codewords. Suppose all codewords in C have a letter from $\{0, 1\}$ in the odd positions, and a letter from $\{a, b, c\}$ in the even positions. Show that

$$\sum_{i\geq 0} \frac{n_i}{2^{\lceil i/2\rceil} \cdot 3^{\lfloor i/2\rfloor}} \le 1,$$

where $\lfloor x \rfloor$ is the greatest integer that is at most x and $\lceil x \rceil$ is the smallest integer that is at least x. [Hint: Arrange the codewords in an appropriate tree and consider a random walk starting at the root.]

- (b) Suppose $A = \{a_1, a_2, a_3, a_4, a_5\}$. Construct an optimal (with minimum expected length) prefixfree encoding for A over the alphabet $\{0, 1\}$ if the probabilities of the symbols in A are $p(a_1) = 0.35$, $p(a_2) = 0.1$, $p(a_3) = 0.15$, $p(a_4) = 0.2$, and $p(a_5) = 0.2$. [You may represent the encoding as a binary tree; it is not essential to list the codewords.]
- 2. Suppose A and B are finite non-empty sets. Let X, Y be random variables taking values in the set $A \times B$. Let $p_{XY}(a, b) = \Pr[X = a \text{ and } Y = b], p_X(a) = \Pr[X = a] \text{ and } p_Y(b) = \Pr[Y = b]$. Recall that I[X:Y] = H[X] + H[Y] H[XY] and H[Y|X] = H[(X,Y)] H[X].
 - (a) Show that

$$I[X:Y] = \sum_{a,b} p_{XY}(a,b) \log_2 \frac{p_{XY}(a,b)}{p_X(a)p_Y(b)}.$$

State why $I[X:Y] \ge 0$.

- (b) Conclude that $H[Y|X] \leq H[X]$.
- (c) State why $H[Y|X] \ge 0$.
- 3. Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4\}$. Consider a source that emits a pair of symbols $(X, Y) \in A \times B$, where X and Y are independent. Suppose $\Pr[X = a_1] = 1/2$, $\Pr[X = a_2] = 1/3$ and $\Pr[X = a_3] = 1/6$; suppose $\Pr[Y = b_1] = 1/6$, $\Pr[Y = b_2] = 1/3$, $\Pr[Y = b_3] = 1/3$ and $\Pr[Y = b_4] = 1/6$. Suppose (X^n, Y^n) denotes n iid samples drawn from this source; for a set $S \subseteq (A \times B)^n$, let $P(S) = \Pr[\langle (X_1, Y_2), (X_2, Y_2), \dots, (X_n, Y_n) \rangle \in S]$. Let

$$R = \lim_{n \to \infty} \frac{1}{n} \min_{S \subseteq (A \times B)^n : P(S) \ge \frac{1}{2}} \log_2 |S|.$$

What is R?

- 4. Consider a channel C with input alphabet A and output alphabet B. Let $p_{b|a}$ denote the probability that the output of the channel is $b \in B$ when the input is $a \in A$.
 - (a) Recall that the capacity of this channel is given by the following expression

$$\mathsf{cap}(\mathcal{C}) = \max_{(X:Y):?} I[X:Y],$$

where (X, Y) are random variables taking values in $A \times B$ with joint distribution satisfying some condition denoted by "?". What is this condition?

(b) Suppose the characteristics of the channel \mathcal{C} are given by the following matrix

$$M = (m_{ij}) = \begin{pmatrix} 0.1 & 0.3 & 0.6\\ 0.6 & 0.1 & 0.3\\ 0.3 & 0.6 & 0.1 \end{pmatrix};$$

that is, $A = \{1, 2, 3\}$, $B = \{1, 2, 3\}$ and the *ij*-th entry $m_{ij} = p(j|i)$. Calculate $cap(\mathcal{C})$ for this channel \mathcal{C} . [Hint: The channel is symmetric in the sense that the rows are permutations of each other, and the columns are permutations for each other.]

5. Suppose $X \sim \mathcal{N}(0, \sigma_1^2)$ and $Y \sim \mathcal{N}(0, \sigma_2^2)$. Consider the random variable $Z = 4 \cdot X + 5 \cdot Y$. Suppose $\sigma_1^2 = 1$ and $\sigma_2^2 = 2$. What is the differential entropy h(Z) of Z?

5 5 20

10

10

10

20

10